AIS Logo
Living knowledge for digital leadership
All AI Governance & Ethics Digital Transformation & Innovation Supply Chain & IoT SME & IT Management Platform Ecosystems & Strategy Cybersecurity & Risk AI Applications & Technologies Healthcare & Well-being Digital Work & Collaboration
A Case Study on Large Vehicles Scheduling for Railway Infrastructure Maintenance: Modelling and Sensitivity Analysis

A Case Study on Large Vehicles Scheduling for Railway Infrastructure Maintenance: Modelling and Sensitivity Analysis

Jannes Glaubitz, Thomas Wolff, Henry Gräser, Philipp Sommerfeldt, Julian Reisch, David Rößler-von Saß, and Natalia Kliewer
This study presents an optimization-driven approach to scheduling large vehicles for preventive railway infrastructure maintenance, using real-world data from Deutsche Bahn. It employs a greedy heuristic and a Mixed Integer Programming (MIP) model to evaluate key factors influencing scheduling efficiency. The goal is to provide actionable insights for strategic decision-making and improve operational management.

Problem Railway infrastructure maintenance is a critical operational task that often causes significant disruptions, delays, and capacity restrictions for both passenger and freight services. These disruptions reduce the overall efficiency and attractiveness of the railway system. The study addresses the challenge of optimizing maintenance schedules to maximize completed work while minimizing interference with regular train operations.

Outcome - The primary bottleneck in maintenance scheduling is the limited availability and reusability of pre-defined work windows ('containers'), not the number of maintenance vehicles.
- Increasing scheduling flexibility by allowing work containers to be booked multiple times dramatically improves maintenance completion rates, from 84.7% to 98.2%.
- Simply adding more vehicles to the fleet provides only marginal improvements, as scheduling efficiency is the limiting factor.
- Increasing the operational radius for vehicles from depots and moderately extending shift lengths can further improve maintenance coverage.
- The analysis suggests that large, predefined maintenance containers are often inefficient and should be split into smaller sections to improve flexibility and resource utilization.
Railway Track Maintenance Planning, Maintenance Track Possession Problem, Operations Research, Mixed Integer Programming, Vehicle Scheduling, Sensitivity Analysis, Optimization
Boundary Resources – A Review

Boundary Resources – A Review

David Rochholz
This study conducts a systematic literature review to analyze the current state of research on 'boundary resources,' which are the tools like APIs and SDKs that connect digital platforms with third-party developers. By examining 89 publications, the paper identifies major themes and significant gaps in the academic literature. The goal is to consolidate existing knowledge and propose a clear research agenda for the future.

Problem Digital platforms rely on third-party developers to create value, but the tools (boundary resources) that enable this collaboration are not well understood. Research is fragmented and often overlooks critical business aspects, such as the financial reasons for opening a platform and how to monetize these resources. Furthermore, most studies focus on consumer apps, ignoring the unique challenges of business-to-business (B2B) platforms and the rise of AI-driven developers.

Outcome - Identifies four key gaps in current research: the financial impact of opening platforms, the overemphasis on consumer (B2C) versus business (B2B) contexts, the lack of a clear definition for what constitutes a platform, and the limited understanding of modern developers, including AI agents.
- Proposes a research agenda focused on monetization strategies, platform valuation, and the distinct dynamics of B2B ecosystems.
- Emphasizes the need to understand how the role of developers is changing with the advent of generative AI.
- Concludes that future research must create better frameworks to help businesses manage and profit from their platform ecosystems in a more strategic way.
Boundary Resource, Platform, Complementor, Research Agenda, Literature Review
You Only Lose Once: Blockchain Gambling Platforms

You Only Lose Once: Blockchain Gambling Platforms

Lorenz Baum, Arda Güler, and Björn Hanneke
This study investigates user behavior on emerging blockchain-based gambling platforms to provide insights for regulators and user protection. The researchers analyzed over 22,800 gambling rounds from YOLO, a smart contract-based platform, involving 3,306 unique users. A generalized linear mixed model was used to identify the effects of users' cognitive biases on their on-chain gambling activities.

Problem Online gambling revenues are increasing, which exacerbates societal problems and often evades regulatory oversight. The rise of decentralized, blockchain-based gambling platforms aggravates these issues by promising transparency while lacking user protection measures, making it easier to exploit users' cognitive biases and harder for authorities to enforce regulations.

Outcome - Cognitive biases like the 'anchoring effect' (repeatedly betting the same amount) and the 'gambler's fallacy' (believing a losing streak makes a win more likely) significantly increase the probability that a user will continue gambling.
- The study confirms that blockchain platforms can exploit these psychological biases, leading to sustained gambling and substantial financial losses for users, with a sample of 3,306 users losing a total of $5.1 million.
- Due to the decentralized and permissionless nature of these platforms, traditional regulatory measures like deposit limits, age verification, and self-exclusion are nearly impossible to enforce.
- The findings highlight the urgent need for new regulatory approaches and user protection mechanisms tailored to the unique challenges of decentralized gambling environments, such as on-chain monitoring for risky behavior.
gambling platform, smart contract, gambling behavior, cognitive bias, user behavior
The Role of Generative AI in P2P Rental Platforms: Investigating the Effects of Timing and Interactivity on User Reliance in Content (Co-)Creation Processes

The Role of Generative AI in P2P Rental Platforms: Investigating the Effects of Timing and Interactivity on User Reliance in Content (Co-)Creation Processes

Niko Spatscheck, Myriam Schaschek, Christoph Tomitza, and Axel Winkelmann
This study investigates how Generative AI can best assist users on peer-to-peer (P2P) rental platforms like Airbnb in writing property listings. Through an experiment with 244 participants, the researchers tested how the timing of when AI suggestions are offered and the level of interactivity (automatic vs. user-prompted) influence how much a user relies on the AI.

Problem While Generative AI offers a powerful way to help property hosts create compelling listings, platforms don't know the most effective way to implement these tools. It's unclear if AI assistance is more impactful at the beginning or end of the writing process, or if users prefer to actively ask for help versus receiving it automatically. This study addresses this knowledge gap to provide guidance for designing better AI co-writing assistants.

Outcome - Offering AI suggestions earlier in the writing process significantly increases how much users rely on them.
- Allowing users to actively prompt the AI for assistance leads to a slightly higher reliance compared to receiving suggestions automatically.
- Higher cognitive load (mental effort) reduces a user's reliance on AI-generated suggestions.
- For businesses like Airbnb, these findings suggest that AI writing tools should be designed to engage users at the very beginning of the content creation process to maximize their adoption and impact.
Human-genAI collaboration, Co-writing, P2P rental platforms, Reliance, Generative AI, Cognitive Load
A Framework for Context-Specific Theorizing on Trust and Reliance in Collaborative Human-AI Decision-Making Environments

A Framework for Context-Specific Theorizing on Trust and Reliance in Collaborative Human-AI Decision-Making Environments

Niko Spatscheck
This study analyzes 59 empirical research papers to understand why findings on human trust in AI have been inconsistent. It synthesizes this research into a single framework that identifies the key factors influencing how people decide to trust and rely on AI systems for decision-making. The goal is to provide a more unified and context-aware understanding of the complex relationship between humans and AI.

Problem Effective collaboration between humans and AI is often hindered because people either trust AI too much (overreliance) or too little (underreliance), leading to poor outcomes. Existing research offers conflicting explanations for this behavior, creating a knowledge gap for developers and organizations. This study addresses the problem that prior research has largely ignored the specific context—such as the user's expertise, the AI's design, and the nature of the task—which is crucial for explaining these inconsistencies.

Outcome - The study created a comprehensive framework that categorizes the factors influencing trust and reliance on AI into three main groups: human-related (e.g., user expertise, cognitive biases), AI-related (e.g., performance, explainability), and decision-related (e.g., risk, complexity).
- It concludes that trust is not static but is dynamically shaped by the interaction of these various contextual factors.
- This framework provides a practical tool for researchers and businesses to better predict how users will interact with AI and to design systems that foster appropriate levels of trust, leading to better collaborative performance.
AI Systems, Trust, Reliance, Collaborative Decision-Making, Human-AI Collaboration, Contextual Factors, Conceptual Framework
“We don't need it” - Insights into Blockchain Adoption in the German Pig Value Chain

“We don't need it” - Insights into Blockchain Adoption in the German Pig Value Chain

Hauke Precht, Marlen Jirschitzka, and Jorge Marx Gómez
This study investigates why blockchain technology, despite its acclaimed benefits for transparency and traceability, has not been adopted in the German pig value chain. Researchers conducted eight semi-structured interviews with industry experts, analyzing the findings through the technology-organization-environment (TOE) framework to identify specific barriers to implementation.

Problem There is a significant disconnect between the theoretical advantages of blockchain for food supply chains and its actual implementation in the real world. This study addresses the specific research gap of why the German pig industry, a major agricultural sector, is not utilizing blockchain technology, aiming to understand the practical factors that prevent its adoption.

Outcome - Stakeholders perceive their existing technology solutions as sufficient, meeting current demands for data exchange and traceability without needing blockchain.
- Trust, a key benefit of blockchain, is already well-established within the industry through long-standing business relationships, interlocking company ownership, and neutral non-profit organizations.
- The vast majority of industry experts do not believe blockchain offers any significant additional benefit or value over their current systems and processes.
- There is a lack of market demand for the features blockchain provides; neither industry actors nor end consumers are asking for the level of transparency or immutability it offers.
- Significant practical barriers include the high investment costs required, a general lack of financial slack for new IT projects, and insufficient digital infrastructure across the value chain.
blockchain adoption, TOE, food supply chain, German pig value chain, qualitative research, supply chain management, technology adoption barriers
Algorithmic Control in Non-Platform Organizations – Workers' Legitimacy Judgments and the Impact of Individual Character Traits

Algorithmic Control in Non-Platform Organizations – Workers' Legitimacy Judgments and the Impact of Individual Character Traits

Felix Hirsch
This study investigates how employees in traditional, non-platform companies perceive algorithmic control (AC) systems that manage their work. Using fuzzy-set Qualitative Comparative Analysis (fsQCA), it specifically examines how a worker's individual competitiveness influences whether they judge these systems as legitimate in terms of fairness, autonomy, and professional development.

Problem While the use of algorithms to manage workers is expanding from the platform economy to traditional organizations, little is known about why employees react so differently to it. Existing research has focused on organizational factors, largely neglecting how individual personality traits impact workers' acceptance and judgment of these new management systems.

Outcome - A worker's personality, specifically their competitiveness, is a major factor in how they perceive algorithmic management.
- Competitive workers generally judge algorithmic control positively, particularly in relation to fairness, autonomy, and competence development.
- Non-competitive workers tend to have negative judgments towards algorithmic systems, often rejecting them as unhelpful for their professional growth.
- The findings show a clear distinction: competitive workers see AC as fair, especially rating systems, while non-competitive workers view it as unfair.
Algorithmic Control, Legitimacy Judgments, Non-Platform Organizations, fsQCA, Worker Perception, Character Traits
Design Guidelines for Effective Digital Business Simulation Games: Insights from a Systematic Literature Review on Training Outcomes

Design Guidelines for Effective Digital Business Simulation Games: Insights from a Systematic Literature Review on Training Outcomes

Manuel Thomas Pflumm, Timo Phillip Böttcher, and Helmut Krcmar
This study analyzes 64 empirical papers to understand the effectiveness of Digital Business Simulation Games (DBSGs) as training tools. It systematically reviews existing research to identify key training outcomes and uses these findings to develop a practical framework of design guidelines. The goal is to provide evidence-based recommendations for creating and implementing more impactful business simulation games.

Problem Businesses and universities increasingly use digital simulation games to teach complex decision-making, but their actual effectiveness varies. Research on what makes these games successful is scattered, and there is a lack of clear, comprehensive guidelines for developers and instructors. This makes it difficult to consistently design games and training programs that maximize learning and skill development.

Outcome - The study identified four key training outcomes from DBSGs: attitudinal (how users feel about the training), motivational (engagement and drive), behavioral (teamwork and actions), and cognitive (critical thinking and skill development).
- Positive attitudes, motivation, and engagement were found to directly reinforce and enhance cognitive learning outcomes, showing that a user's experience is crucial for effective learning.
- The research provides a practical framework with specific guidelines for both the development of the game itself and the implementation of the training program.
- Key development guidelines include using realistic business scenarios, providing high-quality information, and incorporating motivating elements like compelling stories and leaderboards.
- Key implementation guidelines for instructors include proper preparation, pre-training briefings, guided debriefing sessions, and connecting the simulation experience to real-world business cases.
Digital business simulation games, training effectiveness, design guidelines, literature review, corporate learning, experiential learning
Designing Speech-Based Assistance Systems: The Automation of Minute-Taking in Meetings

Designing Speech-Based Assistance Systems: The Automation of Minute-Taking in Meetings

Anton Koslow, Benedikt Berger
This study investigates how to design speech-based assistance systems (SBAS) to automate meeting minute-taking. The researchers developed and evaluated a prototype with varying levels of automation in an online study to understand how to balance the economic benefits of automation with potential drawbacks for employees.

Problem While AI-powered speech assistants promise to make tasks like taking meeting minutes more efficient, high levels of automation can negatively impact employees by reducing their satisfaction and sense of professional identity. This research addresses the challenge of designing these systems to reap the benefits of automation while mitigating its adverse effects on human workers.

Outcome - A higher level of automation improves the objective quality of meeting minutes, such as the completeness of information and accuracy of speaker assignments.
- However, high automation can have adverse effects on the minute-taker's satisfaction and their identification with the work they produce.
- Users reported higher satisfaction and identification with the results under partial automation compared to high automation, suggesting they value their own contribution to the final product.
- Automation effectively reduces the perceived cognitive effort required for the task.
- The study concludes that assistance systems should be designed to enhance human work, not just replace it, by balancing automation with meaningful user integration and control.
Automation, speech, digital assistants, design science
Unveiling Location-Specific Price Drivers: A Two-Stage Cluster Analysis for Interpretable House Price Predictions

Unveiling Location-Specific Price Drivers: A Two-Stage Cluster Analysis for Interpretable House Price Predictions

Paul Gümmer, Julian Rosenberger, Mathias Kraus, Patrick Zschech, and Nico Hambauer
This study proposes a novel machine learning approach for house price prediction using a two-stage clustering method on 43,309 German property listings from 2023. The method first groups properties by location and then refines these groups with additional property features, subsequently applying interpretable models like linear regression (LR) or generalized additive models (GAM) to each cluster. This balances predictive accuracy with the ability to understand the model's decision-making process.

Problem Predicting house prices is difficult because of significant variations in local markets. Current methods often use either highly complex 'black-box' models that are accurate but hard to interpret, or overly simplistic models that are interpretable but fail to capture the nuances of different market segments. This creates a trade-off between accuracy and transparency, making it difficult for real estate professionals to get reliable and understandable property valuations.

Outcome - The two-stage clustering approach significantly improved prediction accuracy compared to models without clustering.
- The mean absolute error was reduced by 36% for the Generalized Additive Model (GAM/EBM) and 58% for the Linear Regression (LR) model.
- The method provides deeper, cluster-specific insights into how different features, like construction year and living space, affect property prices in different local markets.
- By segmenting the market, the model reveals that price drivers vary significantly across geographical locations and property types, enhancing market transparency for buyers, sellers, and analysts.
House Pricing, Cluster Analysis, Interpretable Machine Learning, Location-Specific Predictions
IT-Based Self-Monitoring for Women's Physical Activity: A Self-Determination Theory Perspective

IT-Based Self-Monitoring for Women's Physical Activity: A Self-Determination Theory Perspective

Asma Aborobb, Falk Uebernickel, and Danielly de Paula
This study analyzes what drives women's engagement with digital fitness applications. Researchers used computational topic modeling on over 34,000 user reviews, mapping the findings to Self-Determination Theory's core psychological needs: autonomy, competence, and relatedness. The goal was to create a structured framework to understand how app features can better support user motivation and long-term use.

Problem Many digital health and fitness apps struggle with low long-term user engagement because they often lack a strong theoretical foundation and adopt a "one-size-fits-all" approach. This issue is particularly pressing as there is a persistent global disparity in physical activity, with women being less active than men, suggesting that existing apps may not adequately address their specific psychological and motivational needs.

Outcome - Autonomy is the most dominant factor for women users, who value control, flexibility, and customization in their fitness apps.
- Competence is the second most important need, highlighting the desire for features that support skill development, progress tracking, and provide structured feedback.
- Relatedness, though less prominent, is also crucial, with users seeking social support, community connection, and representation through supportive coaches and digital influencers, especially around topics like maternal health.
- The findings suggest that to improve long-term engagement, fitness apps targeting women should prioritize features that give users a sense of control, help them feel effective, and foster a sense of community.
ITSM, Self-Determination Theory, Physical Activity, User Engagement
The PV Solution Guide: A Prototype for a Decision Support System for Photovoltaic Systems

The PV Solution Guide: A Prototype for a Decision Support System for Photovoltaic Systems

Chantale Lauer, Maximilian Lenner, Jan Piontek, and Christian Murlowski
This study presents the conceptual design of the 'PV Solution Guide,' a user-centric prototype for a decision support system for homeowners considering photovoltaic (PV) systems. The prototype uses a conversational agent and 3D modeling to adapt guidance to specific house types and the user's level of expertise. An initial evaluation compared the prototype's usability and trustworthiness against an established tool.

Problem Current online tools and guides for homeowners interested in PV systems are often too rigid, failing to accommodate unique home designs or varying levels of user knowledge. Information is frequently scattered, incomplete, or biased, leading to consumer frustration, distrust, and decision paralysis, which ultimately hinders the adoption of renewable energy.

Outcome - The study developed the 'PV Solution Guide,' a prototype decision support system designed to be more adaptive and user-friendly than existing tools.
- In a comparative evaluation, the prototype significantly outperformed the established 'Solarkataster Rheinland-Pfalz' tool in usability, with a System Usability Scale (SUS) score of 80.21 versus 56.04.
- The prototype also achieved a higher perceived trust score (82.59% vs. 76.48%), excelling in perceived benevolence and competence.
- Key features contributing to user trust and usability included transparent cost structures, personalization based on user knowledge and housing, and an interactive 3D model of the user's home.
Decision Support Systems, Photovoltaic Systems, Human-Centered Design, Qualitative Research
Designing AI-driven Meal Demand Prediction Systems

Designing AI-driven Meal Demand Prediction Systems

Alicia Cabrejas Leonhardt, Maximilian Kalff, Emil Kobel, and Max Bauch
This study outlines the design of an Artificial Intelligence (AI) system for predicting meal demand, with a focus on the airline catering industry. Through interviews with various stakeholders, the researchers identified key system requirements and developed nine fundamental design principles. These principles were then consolidated into a feasible system architecture to guide the development of effective forecasting tools.

Problem Inaccurate demand forecasting creates significant challenges for industries like airline catering, leading to a difficult balance between waste and customer satisfaction. Overproduction results in high costs and food waste, while underproduction causes lost sales and unhappy customers. This paper addresses the need for a more precise, data-driven approach to forecasting to improve sustainability, reduce costs, and enhance operational efficiency.

Outcome - The research identified key requirements for AI-driven demand forecasting systems based on interviews with industry experts.
- Nine core design principles were established to guide the development of these systems, focusing on aspects like data integration, sustainability, modularity, transparency, and user-centric design.
- A feasible system architecture was proposed that consolidates all nine principles, demonstrating a practical path for implementation.
- The findings provide a framework for creating advanced AI tools that can improve prediction accuracy, reduce food waste, and support better decision-making in complex operational environments.
meal demand prediction, forecasting methodology, customer choice behaviour, supervised machine learning, design science research
Analyzing German Parliamentary Speeches: A Machine Learning Approach for Topic and Sentiment Classification

Analyzing German Parliamentary Speeches: A Machine Learning Approach for Topic and Sentiment Classification

Lukas Pätz, Moritz Beyer, Jannik Späth, Lasse Bohlen, Patrick Zschech, Mathias Kraus, and Julian Rosenberger
This study investigates political discourse in the German parliament (the Bundestag) by applying machine learning to analyze approximately 28,000 speeches from the last five years. The researchers developed and trained two separate models to classify the topic and the sentiment (positive or negative tone) of each speech. These models were then used to identify trends in topics and sentiment across different political parties and over time.

Problem In recent years, Germany has experienced a growing public distrust in political institutions and a perceived divide between politicians and the general population. While much political discussion is analyzed from social media, understanding the formal, unfiltered debates within parliament is crucial for transparency and for assessing the dynamics of political communication. This study addresses the need for tools to systematically analyze this large volume of political speech to uncover patterns in parties' priorities and rhetorical strategies.

Outcome - Debates are dominated by three key policy areas: Economy and Finance, Social Affairs and Education, and Foreign and Security Policy, which together account for about 70% of discussions.
- A party's role as either government or opposition strongly influences its tone; parties in opposition use significantly more negative language than those in government, and this tone shifts when their role changes after an election.
- Parties on the political extremes (AfD and Die Linke) consistently use a much higher percentage of negative language compared to centrist parties.
- Parties tend to be most critical (i.e., use more negative sentiment) when discussing their own core policy areas, likely as a strategy to emphasize their priorities and the need for action.
- The developed machine learning models proved highly effective, demonstrating that this computational approach is a feasible and valuable method for large-scale analysis of political discourse.
Natural Language Processing, German Parliamentary, Discourse Analysis, Bundestag, Machine Learning, Sentiment Analysis, Topic Classification
Challenges and Mitigation Strategies for AI Startups: Leveraging Effectuation Theory in a Dynamic Environment

Challenges and Mitigation Strategies for AI Startups: Leveraging Effectuation Theory in a Dynamic Environment

Marleen Umminger, Alina Hafner
This study investigates the unique benefits and obstacles encountered by Artificial Intelligence (AI) startups. Through ten semi-structured interviews with founders in the DACH region, the research identifies key challenges and applies effectuation theory to explore effective strategies for navigating the uncertain and dynamic high-tech field.

Problem While investment in AI startups is surging, founders face unique challenges related to data acquisition, talent recruitment, regulatory hurdles, and intense competition. Existing literature often groups AI startups with general digital ventures, overlooking the specific difficulties stemming from AI's complexity and data dependency, which creates a need for tailored mitigation strategies.

Outcome - AI startups face core resource challenges in securing high-quality data, accessing affordable AI models, and hiring skilled technical staff like CTOs.
- To manage costs, founders often use publicly available data, form partnerships with customers for data access, and start with open-source or low-cost MVP models.
- Founders navigate competition by tailoring solutions to specific customer needs and leveraging personal networks, while regulatory uncertainty is managed by either seeking legal support or framing compliance as a competitive advantage to attract enterprise customers.
- Effectuation theory proves to be a relevant framework, as successful founders tend to leverage existing resources and networks (bird-in-hand), form strategic partnerships (crazy quilt), and adapt flexibly to unforeseen events (lemonade) rather than relying on long-term prediction.
Artificial intelligence, Entrepreneurial challenge, Effectuation theory, Qualitative research, AI startups, Mitigation strategies
BPMN4CAI: A BPMN Extension for Modeling Dynamic Conversational AI

BPMN4CAI: A BPMN Extension for Modeling Dynamic Conversational AI

Björn-Lennart Eger, Daniel Rose, and Barbara Dinter
This study develops and evaluates a standard-compliant extension for Business Process Model and Notation (BPMN) called BPMN4CAI. Using a Design Science Research methodology, the paper creates a framework that systematically extends existing BPMN elements to better model the dynamic and context-sensitive interactions of Conversational AI systems. The applicability of the BPMN4CAI framework is demonstrated through a case study in the insurance industry.

Problem Conversational AI systems like chatbots are increasingly integrated into business processes, but the standard modeling language, BPMN, is designed for predictable, deterministic processes. This creates a gap, as traditional BPMN cannot adequately represent the dynamic, context-aware dialogues and flexible decision-making inherent to modern AI. Businesses lack a standardized method to formally and accurately model processes involving these advanced AI agents.

Outcome - The study successfully developed BPMN4CAI, an extension to the standard BPMN, which allows for the formal modeling of Conversational AI in business processes.
- The new extension elements (e.g., Conversational Task, AI Decision Gateway, Human Escalation Event) facilitate the representation of adaptive decision-making, context management, and transparent interactions.
- A proof-of-concept demonstrated that BPMN4CAI improves model clarity and provides a semantic bridge for technical implementation compared to standard BPMN.
- The evaluation also identified limitations, noting that modeling highly dynamic, non-deterministic process paths and visualizing complex context transfers remains a challenge.
Conversational AI, BPMN, Business Process Modeling, Chatbots, Conversational Agent
Generative Al in Business Process Optimization: A Maturity Analysis of Business Applications

Generative Al in Business Process Optimization: A Maturity Analysis of Business Applications

Ralf Mengele
This study analyzes the current state of Generative AI (GAI) in the business world by systematically reviewing scientific literature. It identifies where GAI applications have been explored or implemented across the value chain and evaluates the maturity of these use cases. The goal is to provide managers and researchers with a clear overview of which business areas can already benefit from GAI and which require further development.

Problem While Generative AI holds enormous potential for companies, its recent emergence means it is often unclear where the technology can be most effectively applied. Businesses lack a comprehensive, systematic overview that evaluates the maturity of GAI use cases across different business processes, making it difficult to prioritize investment and adoption.

Outcome - The most mature and well-researched applications of Generative AI are in product development and in maintenance and repair within the manufacturing sector.
- The manufacturing segment as a whole exhibits the most mature GAI use cases compared to other parts of the business value chain.
- Technical domains show a higher level of GAI maturity and successful implementation than process areas dominated by interpersonal interactions, such as marketing and sales.
- GAI models like Generative Adversarial Networks (GANs) are particularly mature, proving highly effective for tasks like generating synthetic data for early damage detection in machinery.
- Research into GAI is still in its early stages for many business areas, with fields like marketing, sales, and human resources showing low implementation and maturity.
Generative AI, Business Processes, Optimization, Maturity Analysis, Literature Review, Manufacturing
AI at Work: Intelligent Personal Assistants in Work Practices for Process Innovation

AI at Work: Intelligent Personal Assistants in Work Practices for Process Innovation

Zeynep Kockar, Mara Burger
This paper explores how AI-based Intelligent Personal Assistants (IPAs) can be integrated into professional workflows to foster process innovation and improve adaptability. Utilizing the Task-Technology Fit (TTF) theory as a foundation, the research analyzes data from an interview study with twelve participants to create a framework explaining IPA adoption, their benefits, and their limitations in a work context.

Problem While businesses are increasingly adopting AI technologies, there is a significant research gap in understanding how Intelligent Personal Assistants specifically influence and innovate work processes in real-world professional settings. Prior studies have focused on adoption challenges or automation benefits, but have not thoroughly examined how these tools integrate with existing workflows and contribute to process adaptability.

Outcome - IPAs enhance workflow integration in four key areas: providing guidance and problem-solving, offering decision support and brainstorming, enabling workflow automation for efficiency, and facilitating language and communication tasks.
- The adoption of IPAs is primarily driven by social influence (word-of-mouth), the need for problem-solving and efficiency, curiosity, and prior academic or professional background with the technology.
- Significant barriers to wider adoption include data privacy and security concerns, challenges integrating IPAs with existing enterprise systems, and limitations in the AI's memory, reasoning, and creativity.
- The study developed a framework that illustrates how factors like work context, existing tools, and workflow challenges influence the adoption and impact of IPAs.
- Regular users tend to integrate IPAs for strategic and creative tasks, whereas occasional users leverage them for more straightforward or repetitive tasks like documentation.
Intelligent Personal Assistants, Process Innovation, Workflow, Task-Technology Fit Theory
Load More Showing 180 of 234